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Abstract—A method for discretization of linear fractional 

order systems (LFOS) is presented. Basically, the method 

makes use of rational approximation of the transfer 

function of a fractional system. In this way standard 

discretization techniques for discretization of LFOS can be 

applied. An adequate comparative analysis has also been 

carried out through corresponding examples by applying 

several other known discretization methods. 
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I.  INTRODUCTION 

Designing classical and/or fractional order control laws 
involving integral and differential actions [1,2] often requires 
formulation of a discrete model of the process by using 
methods of invariable response to a pulse or Heaviside 
excitation and a series of other approximate methods [3-20]. 
Since a process can, in general, be represented by a transfer 
function Gp(s) which is not a rational function but which 
describes a fractional order system [21,22], the problem of  
disretization becomes complex. In  addition, the basic problems 
required to be solved by the process of discretization of such, 
or similar, control systems are related to retaining the 
fundamental system properties, such are steady-state gain and 
settling time, as well as basic properties in the frequency 
domain. In the process of discretization of LFOS, where, in 
general, fractional order integral and differential actions 
belong, one can make use of the well-known mapping of s -
domain to z -domain in the complex plane 

 sT
z e= , (1) 

where T  is the sampling time. Transform (1) maps left half-
plane of the s -plane to interior of the unity circle in the 
z -plane. This means that stability of the discrete system has 
been preserved if all poles of the discrete system are located 
within the unity circle. One of the basic goals of discretization 
is acquiring the ability for practical realization of the 
corresponding control laws or of some other requirements in 
order that the digital model is fully equivalent to the continuous 
system over a wide frequency range. 

For the purpose of illustration of LFOS, consider a process 
described by classical diffusion equation (also referred to as the 

heat equation), which is ubiquitous in science and engineering 
since it simultaneously describes a number of transfer 
phenomena, including heat-transfer and a number of other 
diffusion-like processes. These diffusion-like processes include 
diffusion of mass (mechanical diffusion), diffusion of 
momentum (viscosity), diffusion of electrical potential (in long 
lines, when inductivity is negligible), and many others. One-
dimensional diffusion equation is a partial differential equation 
of the form 

 
2

2
z t

ρ ρτ ∂ ∂=
∂ ∂

, 0τ >  (2) 

describing the process of transport (diffusion) of a quantity ρ 
along the z axis in time t. For simplicity, let us address only 
the diffusion within a semi-infinite medium, where both space 
and time variable take arbitrary positive values. Let us assume 
also that the process can be controlled by acting on the cross- 

section 0z = , and that the process output is taken (measured) 

at the cross-section z L= . The dynamics of the process is 

influenced by the diffusion time constant  ( , )z tτ τ= , which 
is, in general, a function of both space and time. However, in a 
variety of practically interesting cases this coefficient can be 
approximated by a constant factor. 

Without loss of generality, assume that (2) describes a heat 
conduction process schematically shown in Fig. 1. Let us 

obtain its transfer function. In this particular case, ( , )z tρ ρ= , 
is the temperature of the cross section defined by space 

coordinate z  evaluated at time instant t . Let ( , )z sρ ρ=� �  

denote the Laplace transform of ρ , where the Laplace 

transform is taken with respect to the time variable t  and the 
space variable z  is considered as a parameter, 

 
0

( , ) ( , ) st

z s z t e dtρ ρ
∞ −= ∫� . (3) 

By applying the Laplace transform to equation (2), one obtains 
general solution 

 / /

1 2
( , ) ( ) ( )z s z s

s z C s e C s e
τ τρ −= +� . (4) 
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Since any heat conduction process is stable, the Laplace 
transform of the temperature in any cross-section must be 
bounded, i.e. 

 lim ( , ) .
z

s z constρ
→∞

=�  (5) 

has to be satisfied, thus C2=0 and equation (4) takes the form 

 /

1
( , ) ( ) z s

s z C s e
τρ −=� . (6) 

 

τ

1
( ,0)sρ ρ=� �

2
( , )s Lρ ρ=� �

z

L0  

Figure 1.  A sketch of the process of heat conduction by diffusion. 

Integration “constant” C1 as well as the conduction function is 
determined from the known (or given) boundary conditions. In 
view of this, the most frequent cases in practice are: 

Case 1. Heat conduction without any convective exchange of 
heat with the environment and fixed temperature at the “left” 
boundary. In this particular case, the temperature of the cross-

section 0z =  could be controlled directly, and considered as 
the input of the process, while the dependent temperature of the 

cross-section z L=  could be considered as the output. The left 

boundary condition for this case is 1
( ,0) ( )s C sρ =� , and the 

transfer function takes the form 

 
/2

1

( , )
( )

( ,0)

T sL s

a

s L
G s e e

s

τρ
ρ

−−= = =
�

�

, 2
/T L τ= . (7) 

Case 2. Heat conduction without any convective exchange of 
heat with the environment and fixed thermal flux at the “left” 
boundary. The process is influenced by gradient of quantity ρ 
at z = 0 (this is the boundary surface of the medium of Fig. 1), 
the input quantity of the process being thermal flux through the 
boundary surface (again without any convective exchange with 
the environment) 

 
0

( , )

z

d s z

dz
ψ ρλ

=

= −
�

 (8) 

and the process (output) quantity is ρ2= ρ(s, L), and the transfer 
function is 

 
2( )

T s

b

K
G s e

s

ρ
ψ

−= =
�

, 2
/T L τ= , /K τ λ= . (9) 

Case 3. Heat conduction without any convective exchange of 
heat with the environment. The last characteristic case is when 

the convection is no longer neglected. Now, the process is 
influenced by a linear combination of the thermal flux and 
temperature at the “left” boundary 

 
0

( , )
( , )

z

d s z
u s z

dz

ρλ η ρ
=

= − +
�

� , (10) 

with output 2
( , )s Lρ ρ= , and the transfer function is 

2

1

( )
1

T s

c

u

K
G s e

T s

ρ −= =
+

�

,
1

K
η

= ,
2

1 2
T

λ
η τ

= ,
2
L

T
τ

= . (11) 

In the examples above, the semi-derivative operator has 
appeared in a number of contexts. It should be mentioned that 
other forms of fractional order transfer functions emerge 
during investigations of different transfer phenomena. In the 
analysis of axial diffusion, i.e. diffusion from the axis of the 
cylinder towards its lateral surface or vice versa, one meets 
transfer functions originating from the Laplace transforms of 
Bessel functions, which have the form 

 ( )
1

K
G s

sT

=
+  (12) 

From this example, transfer functions given by equations 
(7), (9), (11), and (12) belong to the fractional order systems 
having transfer functions which belong to the class of irrational 
functions [23,24]. 

Since these transfer functions describe adequately physical 
processes, a logical question arises whether it is possible to 
formulate fractional order control laws and what would be 
their contribution to process control. Among many modern 
control strategies utilizing fractional order calculus, 
Podlubny’s Fractional order PID [1,2] regulator is emphasized 
here. Classical PID is arguably the most utilized control 
strategy in use today. By replacing classical integral and 
differential actions by their respective fractional order 
analogues, the flexibility and applicability of the PID regulator 
can be greatly increased. Transfer function of the fractional 
order PID is of the form 

 i d
PI D ( )s k k s k s

λ µ λ µ−= + + , , [0,1]λ µ ∈ . (13) 

The reader should notice that the implementation of 
Fractional order PID requires direct implementation of 
fractional order integrator and differentiator. Similar is also 
true for other  

O
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Figure 2.  Parameter plane of the fractional order PIλDµ regulator 
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types of fractional order regulators, as it can be seen from [25-
27]. Such regulators are typically implemented as high order 
FIR or IIR filters [28], Realization of fractional order control 
laws involving an adequate discretization is possible thanks to 
the fast modern computers. It is known that in the regulator 
design two approaches are possible, direct design in the 
discrete domain and the other approach is design in the 
continuous domain first and then transition to the discrete 
domain. Obviously, discretization is required by both 
approaches. However, the discretization procedure is not 
straightforward when fractional order systems are in question, 
a problem which has been causing a considerable interest over 
the past years. 

The paper comprises introduction, main part, conclusions, 
and references. In the first portion of the main part the method 
of rational approximation of the transfer function of LFOS is 
presented. Then, a comparative analysis of the responses to 
Heaviside excitation of the continuous and digital equivalent of 
EFS and their frequency characteristics within a specified 
frequency range is given. 

II. RATIONAL APPROXIMATION OF TRANSFER FUNCTION OF 

LFOS 

Let us consider rational transfer function 

 
1

1 1 0

1

1 1 0

( )

( )

n

n

n n

n n

b s b s bB s

A s a s a s a s a

−
−

−
−

+ + +=
+ + + +

�

�

 (14) 

which should be used to approximate transfer function G(s) of 
a linear fractional order system. For (G(0)≠0, b0=1) or (G(0)=0, 
a0=1) there are 2n real coefficients which should be determined 
from 2n equations obtained from the  condition of overlapping 
the frequency characteristics in the corresponding discrete 

frequency points 0 2 n-1
[ , , , ]ω ω ω ω∈ � , i.e. 

 (i ) (i ) / (i ) 0
k k k

G B Aω ω ω− = , 0, 1k n= − , i 1= − , (15) 

or for G(0)≠0, b0=1 one obtains 

 ( )Re (i ) (i ) / (i ) 0
k k k

A B Gω ω ω− = , 0, 1k n= − , (16) 

 ( )Im (i ) (i ) / (i ) 0
k k k

A B Gω ω ω− = , 0, 1k n= − . (17) 

Set of equations (16), (17) represents a linear system of 
equations having 2n unknown coefficients. By solving this 
system of 2n linear equations, one obtains 2n coefficients of 
rational approximation (14). 

It is important to mention that the selected set of points  

0 2 n-1
[ , , , ]ω ω ω ω∈ � can produce a singular matrix of the set of 

equations (16), (17) which, in this case, should be solved by 
using pseudo-inverse matrix methods or another set of points 
should be applied which results in a regular system matrix of 
the set of equations (16), (17). It is also significant to note that 

it is also possible to use more than n incident points in the 
selected set. The exact solution cannot be found in such a case. 
However, the best approximation, in the least-squares sense, 
can be found by means of pseudo-inversion. 

A. Simulation analysis 

Let us select several LFOS transfer functions and compare 
their Bode characteristics and responses to Heaviside excitation 
with those of the corresponding rational approximations 
determined on the basis of the set of equations (16), (17).  

Example 1. 
3/ 2
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Figure 3.  Frequency and time responses G1(s) (red) i B1(s)/A1(s) 
(blue) 

Example 2. 2
( ) 1/( 2 1)G s s s= − + , [0.01,0.1,0.5,1,5,10,100]ω ∈  
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Figure 4.  Frequency and time responses G2(s) (red) i B2(s)/A2(s) 
(blue) 

Example 3. 3
( ) exp( )G s s= − , [0.01,0.1,1,2,10,50,100]ω ∈ . 
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Figure 5.  Frequency and time responses G3(s) (red) i B3(s)/A3(s) 
(blue) 

Example 4. 4
( ) ln( ) /G s s s= , [0.001,0.01,0.1,0.5,1,5,50]ω ∈ . 
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Figure 6.  Frequency and time responses G3(s) (red) i B3(s)/A3(s) 
(blue) 

Example 5. 
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Figure 7.  Frequency and time responses G5(s) (red) i B5(s)/A5(s) 
(blue) 

Example 6. 
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Figure 8.  Frequency and time responses G6(s) (red) i B6(s)/A6(s) 
(blue) 

As the previous figures show, the rational approximations 
give adequate approximations for a wide range of LFOS. It 
should especially be mentioned that the corresponding 
frequency points are selected on the basis of the knowledge of  
dynamics of Bode characteristics of LFOS transfer functions. 
In all previous examples the selected order 7n = obviously can 
be lower, but under condition that the frequency characteristics 
in the selected frequency range are not violated. Also, for the 
selected set of frequencies in all these examples, the matrices 
of  the sets of equations  (16), (17) have been regular. 

Obviously now, since a rational transfer function is in 
question, applications of all techniques of discretization are 
possible, consequently adequate discrete models of LSF 
transfer functions within certain frequency range are available. 

All of the time-domain responses presented above are 
obtained by means of direct integration in the complex domain. 
The interested reader is referred to [14]. 

III. CONCLUSIONS 

Owing to simplicity of application of the method of rational 
approximation of transfer functions of linear fractional order 
systems, this paper is dedicated to an analysis of the application 
of this approach for the purpose of discretization of linear 
fractional order systems. It should be emphasized that, since a 
rational transfer function of a continuous system is in question, 
application of all techniques of its discretization are possible, 
i.e. for discretization of linear fractional systems.  

Further investigations should tackle the problem of finding 
an optimum degree of rational approximation within a selected 
frequency range and the method of selecting frequency points 
within this range in order to obtain as good approximation as 
possible. Also, future research will address the problem of 
investigating (and possibly guaranteeing) the stability of the 
obtained approximations, under the assumption that the 
original fractioanal order system is itself stable. 
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