
Comparative Analysis of the DRNGD and the NNGD

Algorithms in Complex Domain

Igor R. Krcmar, Milorad M. Bozic, and Petar S. Maric

Faculty of Electrical Engineering

University of Banja Luka

Banja Luka, BiH

{ikrcmar, mbozic, pmaric}@etfbl.net

Abstract— Comparative analysis of the data reusing nonlinear

gradient descent and the normalized nonlinear gradient descent

algorithms is provided. Starting point of the analysis is

linearization of the model of data reusing iterations. Further, this

allows application of the Z-transform and analysis of the

algorithms in the complex domain. Notion of bandwidth of a

neural nonlinear adaptive finite impulse response filter is

introduced and relationship between pole placement of the

algorithm and filter bandwidth is established. Effects of the

output neuron nonlinearity and large bandwidth, on the filter

performance, are analyzed. Requirement for a large filter

bandwidth leads the output neuron to saturation, thus decreasing

overall filter performance. Nonlinear system identification

experiments performed on the benchmark nonlinear systems

support the analysis.

Keywords-adaptive filter, bandwidth, complex domain, data

reusing nonlinear gradient descent algorithm, normalized

nonlinear gradient descent algorithm

I. INTRODUCTION

The least mean squares (LMS) algorithm, due to its

robustness and simplicity, is the most frequently used

algorithm in system identification and time series prediction

tasks. However, when dealing with nonlinear processes, the

LMS algorithm can show poor performance [1,2]. Its

nonlinear counterpart, the nonlinear gradient descent (NGD)

algorithm operated on a neural adaptive finite impulse

response (FIR) filter, inherits simplicity and robustness of the

LMS algorithm, while it copes with nonlinearities in the

process [3]. The dynamics of the NGD algorithm, operated on

the nonlinear FIR filter, is described by

 () () ()Ty k k k x w (1)

 () () ()e k d k y k (2)

 (1) () (()) () ()k k net k k e k w w x (3)

where y(k) is the output of the filter, e(k) is the instantaneous

error at the output, d(k) is some teaching (desired) signal, x(k)

= [x1(k), x2(k), , xN(k)]
T
 is the input vector, w(k) = [w1(k),

w2(k), , wN(k)]
T
 is the weight vector, () is nonlinear

activation function at the output neuron, N is length of the

weight vector and the input vector, is the learning rate

parameter, k is the discrete time instant, ()’ denotes the first

derivative and ()
T
 denotes vector transpose. The aim of a

neural adaptive filter, based on the NGD algorithm, is to

achieve optimal weight values by iterating (1) – (3), thus

minimising the cost function 2() 1 2 ()J k e k .

Regardless inherent nonlinearity, the NGD algorithm can

exhibit slow convergence, especially when applied in non

stationary environment [4]. Further, the algorithm specified by

(1) – (3) is an a priori algorithm. The fact, that the updated

weight vector w(k+1) is available before the arrival of the next

input vector x(k+1) and carries a new information on the

system, provided by the latest measurement of the system

output, y(k), can help to improve error estimation. Thus, an a

posterior output estimatey(k) can be calculated as y(k) =

[x
T
(k) w(k+1)]. The corresponding a posterior output error is

given by as e(k) = d(k) -y(k) and inequality |e(k)| |e(k)|;

0 1, should hold [5,2].

If we use this principle, and iterate (1)-(3), L times on the

same measurement data, i.e. input vector x(k) and teaching

signal d(k) are kept constant, we get a data-reusing NGD

(DRNGD) algorithm [6,7]. The equations, that describe

DRNGD algorithm for nonlinear adaptive FIR filter, are

 () (() ())T

i iy k k k x w (4)

 () () ()i ie k d k y k (5)

1() () (() ()) () ()T

i i i ik k k k k e k
 w w x w x (6)

subject to |ei+1(k)| |ei(k)|; 0 1, i = 1, 2, , L. From (6)

we have w(k+1) = wL+1(k) and w(k) = w1(k).

Normalised GD algorithms for neural adaptive filters have

improved performance comparing to the LMS and the NGD

algorithm. Improved performance means lower sensitivity to

certain filter design parameters, faster convergence, and higher

accuracy [8,9,3,4]. It is well known fact, from the control

system theory, that system should provide fast and accurate

response to the input signal [10,11]. System bandwidth is

responsible for the system response, i.e. larger bandwidth

provides faster response. Unfortunately, large bandwidth can

open a door to disturbances acting on the system, it can put

system nonlinearities into the game, and reduce stability

margin. Also, requirement for a small steady state error might

result in slow response of the system [10,11]. The same holds

IX Symposium Industrial Electronics INDEL 2012, Banja Luka, November 01�03, 2012

171

for neural adaptive filters and algorithms operating on them,

since they form a dynamical system.

Till now, relationship between the data reusing LMS

(DRLMS) and normalized LMS (NLMS) algorithms was

established and performance of the algorithms was studied and

compared [3,6]. Performance of the DRLMS algorithm tends

to tone of the NLMS algorithm, as number of DR iterations

tends to infinity. There are indices that similar relationship

holds for the DRNGD and the NNGD algorithms [3,6,8]. In

this paper, we provide comparative analysis of the DRNGD

and the NNGD [4] algorithms . The paper is organized as

follows. The second section brings analysis of the DRNGD

algorithm in complex domain. Based on the analysis

performance of the DRNGD and the NNGD algorithms are

compared. The third section gives experimental verification of

the analysis, while Section IV concludes the paper.

II. ANALYSIS OF THE DRNGD ALGORITHM IN THE

COMPLEX DOMAIN

Equations (4)-(6) give the state space description of a

discrete time (DT) nonlinear time invariant (NLTI) system.

The teaching signal d(k), the weight vector w(k), and the input

vector x(k) define an operating point of the system. Thus, in

the vicinity of the operating point nonlinear model can be

substituted with the linear one, obtained through the process of

linearization. A Taylor series expansion of the filter output (4)

yields

()

()
1

() ()

() ()
1 1

()

1

() ()

1 1

()
() () ()

()

()1
() ()

2! () ()

() () ()

1
() () () ()

2!

N
ji

i ij
j i

N N
j li

i ij l
l j i i

N
j

k j i

j

N N
j l

k l j i i

l j

y k
y k y k w k

w k

y k
w k w k

w k w k

y k x k w k

x k x k w k w k

 (7)

where partial derivatives are computed at the operating point,

wi
(j)

(k) denotes j
th

 component of the vector wi(k) = wi(k) -

w(k), and k = (x
T
(k)w(k)). A truncated Taylor series of (7)

gives

 ()

1

() () () ()
N

j

i k j i

j

y k y k x k w k

 (8)

Now, linear description of the filter output is as follows

 () () ()T

i k iy k k k x w (9)

where yi(k) = yi(k) - y(k). If we subtract d(k) from both sides

of (8) we have

()

1

() () () ()

() () ()

N
j

i k j i

j

T

k i

e k e k x k w k

e k k k

x w

 (10)

Further, subtraction of w(k) from both sides of (6) gives

1() () (() ()) () ()T

i i i ik k k k k e k
 w w x w x (11)

If we introduce ei(k), given by (10), in (11), it becomes

 1() () (() ()) () () ()

(() ()) () ()

T T

i i i k i

T

i

k k k k k k k

k k k e k

w w x w x x w

x w x

 (12)

Under the assumption of a slow weight update, i.e. k’=

(x
T
(k)w1(k))≈ (x

T
(k)w2(k))≈ ≈(x

T
(k)wL(k)), (9), (10),

and (12) describe LTI system. Therefore application of the Z-

transform [12] on (9) and (12) yields

 () () ()T

kY z k z x W (13)

2

() () () () () ()T

k kz z k k z k E z

W I x x W x

 (14)

where I denotes identity matrix, z denotes complex variable,

W(z) = Z[wi(k)], E(z) = Z[e(k)], and Y(z) = Z[yi(k)].

Also, initial value w0
(j)

(k)=0, j=1,2, ,N. From (14) we have

1

2

() (1) () () () ()T

k kz z k k k E z

W I x x x

 (15)

After application of matrix inversion lemma [10], (15)

becomes

2

2

2

() ()
()

1 ()

k

k

k E z
z

z k

x
W

x

 (16)

where ||||2 denotes second vector norm. Combining (13) and

(16) we have

2
2

2

2
2

2

2
2

2

() ()
() ()

1 ()

()
()

1 ()

T k

k

k

k

k

k E z
Y z k

z k

k
E z

z k

x
x

x

x

x

 (17)

Now, under assumption of stability of the DRNGD algorithm,

we can formulate the following propositions.

Proposition 1. In the limit, as number of data-reusing

iterations, L, tends to infinity, the NGD algorithm yields the

normalised NGD (NNGD) algorithm.

To prove the proposition note that e(k) is constant during data

reusing iterations, thus E(z) = e(k)z/(z-1). Further, stability

assumption, together with (16), and the final value theorem of

the Z-transform yields

1

1

21 2

2

() (1) () lim () ()

() ()
lim(1) ()

()

L
L

k

z

k

k k k k k

k e k
z z

k

w w w w w

x
W

x

 (18)

The last expression on the right hand side of (18) gives the

weight correction of the NNGD algorithm, which completes

the proof.

Proposition 2. The NNGD algorithm tends to provide

maximum bandwidth for the neural adaptive FIR filter.

172

If we introduce optimal learning rate OPT = 1/[(k’)
2
 ||

x(k)||2
2
] [4] in (17), we have

()

()
E z

Y z
z

 (19)

The optimal learning rate places pole of the discrete transfer

function, given by (17), to zero. Therefore the NNGD

algorithm provides maximum bandwidth of the neural

adaptive filter. Now, we shall give several comments on the

obtained results.

Comment 1. From (16) and (17) it is clear that the DR

NGD algorithm behaves as the first order DT dynamical

system. Therefore, the dynamics of the DR iterations is

described by the pole αDR = 1 - η(k’)
2
 || x(k)||2

2
. Further, the

DR iterations, under the assumption of slow adaptation, i.e.

small value of η, can be considered as a fixed point iteration

(FPI) [3]. Thus, effective value of the pole of the DRNGD

algorithm is αDRNGD = (αDR)
L

 = [1 - η(k’)
2
 || x(k)||2

2
]

L
[3]. In

order to provide stability of the DR iterations |αDR| < 1, and

consequently limL->∞ (αDR)
L
 = 0. So, if number of DR

iterations tends to infinity effective value of the pole of the

DRNGD algorithm tends to zero. In this way the DRNGD

algorithm tends to provide maximum bandwidth of the neural

adaptive FIR filter.

Comment 2. Introduction of the optimal learning rate in the

DRNGD algorithm yields the fact that the algorithm reaches

its final value in a single iteration. Therefore, yi(k) becomes

y(k) = y(k) - y(k-1) and from (19) we have y(k) = e(k-1) =

d(k-1) - y(k-1), and consequently y(k) = d(k-1). The NNGD

algorithm is optimal at each time instant, thus it is optimal on

the whole trajectory.

Comment 3. Usually, the optimal learning rate, within the

NNGD algorithm, is modified in order to compensate for the

linearization errors [3, 4]. Then the learning rate becomes =

1/[(k’)
2
 || x(k)||2

2
+C], where C appears as the algorithms

design parameter and, in most of the applications, takes some

small, suitable chosen, positive value. Now, (17) becomes

 () ()
1

Y z E z
z

 (20)

where = (k’)
2
 || x(k)||2

2
/[(k’)

2
 || x(k)||2

2
+C]. Constant C has

to be chosen to provide stability of the NNGD algorithm, i.e.

|1 - | 1, however overall behaviour of the algorithm will be

suboptimal.

Comment 4. The fact that the NNGD algorithm tends to

provide maximum bandwidth of the neural adaptive FIR filter

might jeopardize the stability of the algorithm. Large

bandwidth has the task to force the a posterior output error to

zero, as in the dead beat controller [10]. This fact requires

large correction of weights, which might lead the output

neuron to saturation. In that case = 0 and pole of the NNGD

algorithm equals 1. Therefore, the algorithm becomes

unstable. These facts indicate the choice of the value of

constant C. It should be chosen neither too small, nor too

large, because in either of these cases one can expect problems

with stability of the NNGD algorithm.

Comment 5. Similar line of reasoning, as given within the

above comment, holds for the DRNGD algorithm. However, it

is worth noting that relatively large value of αDR may yield

relatively small value of the effective pole value αDRNGD =

(αDR)
L
. Therefore, the DRNGD algorithm may provide large

correction of weights, through the mechanism of DR

iterations, without forcing the output neuron to saturation.

Comment 6. In the case of linear activation function, the

whole analysis holds. Further, there is no need for

linearization procedure and the assumption on slow weight

adaptation can be omitted. Also, there is no need for

comments regarding the output neuron saturation. Obtained

results then relates to the DRLMS algorithm and the NLMS

algorithm.

III. EXPERIMENTAL RESULTS

In order to confirm the analysis system identification

experiments were carried out on nonlinear systems. The

experiments were performed as Monte Carlo simulations with

100 independent runs. In all the experiments the logistic

function Φ(x) = 1/(1+exp(-βx)) was nonlinear activation

function of the output neuron and the slope of the logistic

nonlinearity was set β = 4, and the number of DR iterations

were taking value from the set L = {1, 3, 5, 10, 30, 50, 100}.

In the first experiment the DRNGD and the NNGD algorithms

were applied for system identification of the nonlinear system

given by

0() 1/ (1 exp(()))Ty k k x w (21)

where w0 = [-0.09 0.34 -0.16 0.11 0.14]
T
 . The estimator was

nonlinear neural adaptive FIR filter of the filter order N = 5,

inputs to the system identification experiment were

realizations of the Gaussian random process with zero mean

and unite variance, and the initial value of weights were

normally distributed random values, with zero mean and unite

variance. The learning rate parameter, of the DRNGD

algorithm, was η = 0.01. The constant C of the NNGD

algorithm was C = 0.1. Performance measure was the square

of the second norm of the weight error vector, v(k) = w0(k) –

w(k). Results of the first experiment were summarized on Fig.

1. and Fig. 2. Fig. 1. shows convergence curves for the

DRNGD and the NNGD algorithm, while Fig. 2. presents

average of the effective pole value for the applied algorithms.

From the Fig. 1. it is obvious that increase in the number of

DR iterations, L, improves performance of the DRNGD

algorithm, and in the limit the DRNGD algorithm approaches

performance of the NNGD algorithm. Fig. 2. shows that

effective value of pole of the DRNGD algorithm approaches

pole value of the NNGD algorithm as number of DR iterations

increases. Further, there is obvious correlation between

effective pole placement and performance of the DRNGD

algorithm.

In the second experiment, system identification of the

nonlinear benchmark system [13], given by

3

2

()
(1) ()

1 ()

y k
y k u k

y k

 (22)

173

Figure 1. Convergence curves in the first experiment

Figure 2. Effective value of the pole of the algorithms in the first experiment

was performed. The applied estimator was nonlinear neural

adaptive FIR filter of the order N = 10, the initial value of

weights were normally distributed random values, with zero

mean and unite variance, the input to the system identification

experiment was Gaussian random process with zero mean and

unite variance, scaled to fit the range [0.1, 0.8], and the

performance measure was the prediction gain, PG =

10log10(σy
2
/ σe

2
), where σy

2
 denotes variance of the output

prediction and σe
2
 denotes variance of the output error.

The learning rate parameter, of the DRNGD algorithm, was

taking values from the set η = {0.001, 0.01, 0.1, 0.2, 0.3, 0.5},

while the constant C, of the NNGD algorithm, was taking

values from the range 0.001 to 100. Fig. 3. shows performance

of the NNGD algorithm and an average pole value of the

algorithm. Fig. 4. shows performance of the DRNGD

algorithm with respect to the values of the learning rate

parameter and the number of DR iterations. Further, Fig. 5.

brings effective value of the pole of the DRNGD algorithm,

while Fig. 6. presents average value of the pole of DR

iterations.

Figure 3. Performance curve and pole value of the NNGD algorithm in the

second experiment

Figure 4. Performance surface of the DRNGD algorithm in the second

experiment

From Fig. 3. it is obvious that for small values of the constant

C the NNGD algorithm forces the output neuron to saturation,

e.g. for C=0.001 average value of the activation of the output

neuron was 18.32. Thus, pole of the algorithm becomes close

to 1 and the overall behaviour of the estimator is quite poor.

Also, performance of the estimator decreases as value of the

constant C becomes very large. In this case value of the pole

becomes close to 1, but the output neuron does not go to

saturation, e.g. for C=100 average value of the activation of

the output neuron was 0.93. On the other hand, from Fig. 4. is

clear that for certain values of the learning rate and the number

of DR iterations the DRNGD algorithm outperforms the

NNGD algorithm. For very low value of η and low value of L,

the DRNGD algorithm exhibits poor performance, due to the

very slow adaptation of weights. In this case, as presented on

Fig. 5, the effective pole value is close to 1. In the case of

large value of L and relatively large value of η, the effective

pole value is close to 0, thus the DRNGD algorithm forces the

output neuron to saturation, and overall performance of the

174

estimator decreases. However, from Fig. 5. and Fig. 6. can be

seen that DR mechanism may provide small effective pole

value even in case of small value of the learning rate

parameter, thus avoiding saturation of the output neuron.

Figure 5. Effective pole value of the DRNGD algorithm in the second

experiment

Figure 6. Average pole value of the DR iterations in the second experiment

IV. CONCLUSIONS

The comparative analysis of the DRNGD and the NNGD
algorithm in the complex domain has been performed. It has
been shown that the DRNGD algorithm, under assumption of
slow weight adaptation, i.e. small value of the learning rate
parameter, approaches performance of the NNGD algorithm as

number of DR iterations tends to infinity. The notion of the
neural nonlinear adaptive filter has been introduced and
studied. Correlation between the bandwidth of the filter and
effective value of the pole of the algorithm has been
established. It has been shown that large bandwidth of the
filter might force the output neuron of the filter to saturation,
thus decreasing performance of the neural nonlinear adaptive
filter. An undertaken nonlinear system identification
experiments have supported the analysis.

REFERENCES

[1] Simon Haykin, Adaptive Filter Theory, 3rd edition, Prentice-Hall, 1996.

[2] J. R. Treichler, C. R. Johnson, and M. G. Larimore, Theory and design
of adaptive filters, John Wiley and Sons, 1987.

[3] D. P. Mandic and J. A. Chambers, Recurrent Neural Networks for
Prediction: Learning Algorithms, Architectures, and Stability, Wiley
Series in Adaptive and Learning Systems for Signal Processing,
Communications, and Control, John Wiley & Sons, 2001.

[4] D. P. Mandic,"The NNGD Algorithm for Neural Adaptive Filters,"
Electronics Letters, vol. 36, no. 9, pp. 845-846, 2000.

[5] D. P. Mandic and J. A. Chambers, "Relationships Between the A Priori
and A Posteriori Errors in Nonlinear Adaptive Filters," Neural
Computation, vol. 12, no. 6, pp. 1285-1292, 2000.

[6] J. Benesty and T. Gaensler, ―On data-reuse adaptive algorithms,‖ in
Proceedings of International Workshop on Acoustic Echo and Noise
Control (IWAENC2003), pp. 31-34, Kyoto, Japan, Sept. 2003.

[7] A. I. Hanna and D. P. Mandic, ―A data-reusing nonlinear gradient
descent algorithm for a class of complex-valued neural adaptive filters,‖
Neural Processing Letters, vol. 17, pp. 85-91, 2003.

[8] S. C. Douglas, ―A family of normalized LMS algorithms,‖ IEEE Signal
Processing Letters, vol. 1, no. 3, pp. 49-51, 1994.

[9] E. Soria-Olivas, J. Calpe-Maavilla, J. F. Guerrero-Martinez, M.
Martinez-Sober, and J. Espi-Lopez, ― An easy demonstration of the
optimum value of the adaptation constant in the LMS algorithm,‖ IEEE
Transaction on Education, vol. 41, no. 1, pp. 81-83, 1998.

[10] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control System
Design, Prentice Hall, 2000.

[11] A. S. Bazanella, L. Campestrini, and D. Eckhard, Data-Driven
Controller Design, The H2 Approach, Springer, 2012.

[12] E. Soria, J. Calpe, J. Chambers, M. Martinez, G. Camps, and J. D.
Martin Guerrero, ― A novel approach to introducing adaptive filters
based on the LMS algorithm and its variants,‖ IEEE Transaction on
Education, vol. 47, no. 1, pp. 127-133, 2004.

[13] K. S. Narendra and K. Parthasarathy, ―Identification and control of
dynamical systems using neural networks,‖ IEEE Transactions on
Neural Networks, vol. 1, no. 1, pp. 4–27, 1990.

175

