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University of Nǐs
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Abstract—In the present paper a new design method for
continuous-time power-symmetric active RC filters, which is suit-
able for two-channel hybrid filter bank realization, is proposed.
Some theoretical properties of continuous-time power-symmetric
filters in a more general perspective are studied. This includes the
derivation of a new general analytical form, and a study of poles
and zeros locations in s-plane. In the proposed design method the
analytic solution of filter coefficients is solved in s-domain using
only one nonlinear equation. Finally, the proposed approximation
is compared to standard approximations. It was shown that
attenuation and group delay characteristic of the proposed filter
lie between Butterworth and elliptic characteristics.

Keywords- Hybrid filter bank, power complementary filter pair,
rational transfer function, allpass network, active RC filter.

I. I NTRODUCTION

Many continuous-time signals have a low level nature,
such as the output of sensors, then their processing often
require multi-band decomposition for time-frequency analysis,
manipulation, recognition of the signal, or storage. The hybrid
filter bank (HFB) can be used for these applications and it is
also suitable for high resolution conversion between analog
and digital signals. Therefore, HFB is associated with analog
to ADCs working at lower sample rate in comparison with the
Nyquist sampling rate. Thus, the HFB is an unconventional
class of the filter bank that employs both analog and digital
filters [1]–[4].

The principle of a continuous-time linear hybrid two chan-
nel filter bank is shown in Fig. 1. The system consists of
an continuous-time analysis two channel filter bank, uniform
samplers, quantizers, and a discrete-time synthesis filterbank.
The analysis filter bank consists of the low-pass filterH0(s)
and high-pass filterH1(s). Both filters have the same pass-
band edge and split the spectrum of the band limited input
signalx(t) by the factor of 2. The sampling and quantization
takes place at the output of the analysis filters with the
twice lower sampling frequency1/(2Ts). The quantized signal
goes into a linear discrete-time synthesis filter bank, which
generate a single signal from two upsampled and interpolated
signals. The up samplers are used to retain the desired Nyquist
sampling rate1/Ts.

The continuous-time filters chosen to build the analysis filter
bank play an important role in the performance of the hybrid
filter bank. It is known that continuous-time filters of odd

degree can be realized as the sum of two stable all-pass filters
with real coefficients having no common poles [5]. As all-pass
sums, such filter bank can be realized with low complexity
structures that are robust to finite precision of components.
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Fig. 1. Two channel hybrid continuous/discrte filter bank.

For the definition purposes, consider a continual prototype
lowpass-highpass filter pair, denoted by[H0(s), H1(s)], where
H0(s) is transfer function of lowpass part of filter pair and
H1(s) = H0(s

−1) is transfer function of highpass part filter
pair. Normalized passband edge for both filters is equal to one.

A filter pair [H0(s), H1(s)] is apower-complementaryfilter
pair [6] if the sum of the squares of their magnitude responses
satisfies

H0(s)H0(−s) +H1(s)H1(−s) = 1 (1)

or at real frequencys = j ω

|H0(jω)|2 + |H1(jω)|2 = 1 (2)

For this pair, the angular frequencyωc = 1, where|H0(j)|2 =
|H1(j)|2 = 0.5, is thecrossover angular frequency. At this an-
gular frequency, the gain responses of both filters are approx-
imately 3 dB below their maximum values. Note, crossover
angular frequency is 3 dB passband edge for both lowpass
and highpass part of filter pair. Thus,H1(s) = H0(s

−1).
A filter pair [H0(s), H1(s)] is an all-pass-complementary

filter pair [7] if the sum and difference ofH0(s) andH1(s)
satisfies

H0(s) +H1(s) = A1(s)

H0(s)−H1(s) = A2(s)
(3)

whereA1(s) andA2(s) are all-pass transfer functions.
Transfer function sets which are simultaneously all-pass

complementary and power complementary are termeddouble
complementary. All double complementary filter pair can

X International Symposium on Industrial Electronics INDEL 2014, Banja Luka, November 06�08, 2014

175



be expressed as the sum of stable allpass filters such as
the Butterworth and the elliptic filters. The other classical
approximation cannot form a double complementary pair.

New efficient approximation of the doubly complementary
filter pair is proposed in this paper. The realization, based
on the continuous-time all-pass filters, which validate this
approach is also presented.

II. A PPROXIMATION

Necessary and sufficient conditions for the transfer function
to be suitable for the realization of the continuous-time two
channel filter banks are given in this section. In general, the
squared magnitude characteristic of the lowpass prototypein
the s-plane is expressed in the form

H0(s)H0(−s) =
1

1 +K(s)K(−s)
(4)

where filter characteristic functionK(s) is rational, and the
polynomial in denominator contains only even or odd power
of s, but, the polynomial in nominator contains only even
power ofs. For power symmetric filter design, at normalized
passband edge frequencys = ±j the characteristic function is
equal to one, then the insertion loss of filter at this frequency
is 3.0103 dB. In fact, Butterworth, Chebyshev1, Chebyshev2,
and elliptic filters are introduced in this form, and the filter
properties are governed in a way whereK(s) is chosen [8].

Lemma 1:The rational transfer functionsH0(s) andH1(s)
in Eq. (1) satisfied power symmetric inz [9] and in s-domain
if

K(s)K(−s)K(s−1)K(−s−1) = 1 (5)

Proof: For Eq. (4) we have

H0(s)H0(−s) +H0(s
−1)H0(−s−1)

=
1

1 +K(s)K(−s)
+

1

1 +K(s−1)K(−s−1)

=
1 +R(s)

R(s) +K(s)K(−s)K(s−1)K(−s−1)

(6)

whereR(s) = 1 +K(s)K(−s) +K(s−1)K(−s−1). Clearly,
this is equal to one if and only if

K(s)K(−s)K(s−1)K(−s−1) = 1

This lemma is proved.
Based on the preceding result it is possible to develop a gen-

eral analytic form forK(s) which is suitable for continuous-
time power symmetric filter design.

Lemma 2:A rational filter transfer function (4) satisfied
power symmetric [10] ins-domain (5) if and only if char-
acteristic function has the form

K(s) = sk
M∏

m=1

( s2 + ω2
m

ω2
ms2 + 1

)lm
(7)

with ωm < 1 and arbitrary integerlm, for m = 1, 2, . . . ,M .
Filter order isN = k + 2

∑M
m=1 lm.

This condition can be expressed equivalently by

K(−s)K(s−1) = (−1)k (8)

for all s.
Proof: This comes from the following facts:

1) K(−s) = (−1)kK(s)

2) K(s−1) =
1

K(s)

This lemma is proved.
Note, for k > 1 and l1 = l2 = · · · = lM = 0 we have

Butterworth filter which is power-symmetric. Fork = 0 or 1
and l1 = l2 = · · · = lM = 1 we have Elliptic filters which
are also power-symmetric. Chebyshev filters cannot be power-
symmetric because they have ripples only in the passband or
stopband.

Lemma 3:Let H0(s) be a rational with real coefficients
power symmetric filter function, then all poles of it are
restricted to be on the unit circle.

Proof: SinceK(s) has the form (7), its poles are restricted
to be on the imaginary axis, then power symmetricH0(s)
implies (8) and equation (4) can be rewritten as

H0(s)H0(−s) =
1

1 + (−1)k
K(s)

K(s−1)

(9)

At pole frequencies ofH(s) the denominator of the expres-
sion (9) is zero, that is

K(s)

K(s−1)
= (−1)k+1 (10)

In view of the real-coefficient assumption ats = e−jθ we
haveK(e−jθ) = K∗(ejθ). On the unit circle of thes-plane
we therefore have

∣∣∣ K(ejθ)

K(e−jθ)

∣∣∣ = 1 (11)

So, the quantityK(s)/K(s−1) has unit-magnitude on the unit
circle, then all poles ofH(s)H(−s) are on the unit circle.

Lemma 4:A filter pair [H0(s),H1(s)] is an all-pass-
complementary filter pair of transfer functions, i.e., a par
satisfied

H0(s) +H1(s) = A1(s) (12)

whereA1(s) is an stable all-pass transfer function. Then, the
following equation is also automatically satisfied

H0(s)−H1(s) = A2(s) (13)

Proof: Since A1(s) and A2(s) are the allpass transfer
functions, thenA1(s)A1(−s) = 1 and A2(s)A2(−s) = 1.
Further, the squared magnitude characteristic of left sideof
equation (12) is

G(s) =[H0(s) +H1(s)][H0(−s) +H1(−s)]

=1 +H0(s)H1(−s) +H0(−s)H1(s)
(14)

because filter pair[H0(s), H1(s)] is power complementary.
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Let N be odd. Transfer functionH0(s) andH1(s) have the
form

H0(s) =

M∏
m=1

(ω2
ms2 + 1)lm

(s+ 1)(sN−1 + α1sN−2 + · · ·+ α1s+ 1)

H1(s) =

sN−2ν
M∏

m=1
(s2 + ω2

m)lm

(s+ 1)(sN−1 + α1sN−2 + · · ·+ α1s+ 1)

(15)

where ν =
∑M

m=1 lm and N = k + 2ν. SinceH0(s) is a
ratio of even and odd polynomials thenH0(−s) = −H0(s).
On the other hand,H1(s) is a ratio of odd polynomials then
H1(−s) = H1(s). When this is substituted into equation (14),
we obtainG(s) = 1, i.e., squared magnitude characteristic of
H0(s) + H1(s) is equal to one. Thus,H0(s) + H1(s) is an
allpass function.

III. T HE TWO CHANNEL FILTER BANK

Two-channel power complementary filter bank [11] is
shown in Fig. 2 is considered in this section, whereA1(s)
andA2(s) are two continuous time stable all-pass filters with
real coefficients having no common poles.

+

+

1
2

1
2

−1

x(t)

A2(s)

A1(s)

x1(t)

x0(t)

Fig. 2. The system of two-channel power complementary filter bank.

It is interesting to note that only continuous-time filters of
odd degree can be realized as all-pass sums.

H0(s) =
X0(s)

X(s)
=

1

2
[A1(s) +A2(s)] (16)

and

H1(s) =
X1(s)

X(s)
=

1

2
[A1(s)−A2(s)] (17)

The transfer functionsH0(s) andH1(s) can be implemented
simply by implementing all-pass networksA1(s) andA2(s).

A. Approximation

The squared magnitude of the transfer function of the
proposedn-th degree with single pair of zeros (M = 1 and
l1 = 1) at ±jω1 is:

|H(jω)|2 =
1

1 + ω2k
( ω2

1 − ω2

1− ω2ω2
1

)2
(18)

whereω1 < 1 determined minimum stop-band attenuation.
Performing analytic continuationω = −js, equation (18)

gets form

H(s)H(−s) =
(1 + s2ω2

1)
2

(1 + ω2
1s

2)2 + (−1)ks2k(s2 + ω2
1)

2
, (19)

or in simpler form,H(s) can be written as

H(s)H(−s) =
(ω2

1s
2 + 1)2

s2N + d
2(N−1)
1 + · · ·+ d1s+ 1

(20)

where

di =





(−1)k
(
2
i

)
(ω2

1)
i, i = 0, . . . , k − 1,(

2
i

)
(ω2

1)
i +

(
2

i−k

)
(ω2

1)
2−i+k, i = k, . . . , 2,(

2
i−k

)
(ω2

1)
2−i+k, i = 3, . . . , N

If k ≥ 4, thendi = 0, for i = 4, . . . , k. The poles ofH(s) are
the poles ofH(−s), reflected about origin. Since the desired
filter function must have all poles in the left half of thes-plane,
we must associate the left half plane poles ofH(s)H(−s) with
H(s). Unknown parameterω1 to be determined so that the
minimum attenuation in the stop-band has specified valueRs.
This can be done by solving a single nonlinear equation in
one unknown.

B. An example

For example, by settingk = 3, M = 1, l1 = 1 and
ω1 = 0.551017 the order of the filter isN = 5, and minimum
stopband attenuation isRs = 40 dB. The factored form of
transfer functions of the two channel filter bank in thes-plane,
which is designed by using proposed method, is

H0(s) =
0.303617s2 + 1

(s+ 1)(s2 + 0.472822s+ 1)(s2 + 1.472822s+ 1)

and the analogue highpass prototype is

H1(s) =
s3(s2 + 0.303617)

(s+ 1)(s2 + 0.472822s+ 1)(s2 + 1.472822s+ 1)

These two prototypes are all-pass complementary

A1(s) =
s2 − 1.472821 s+ 1

s2 + 1.472821 s+ 1

A2(s) =
(−s+ 1)(s2 − 0.472822s+ 1)

(s+ 1)(s2 + 0.472822s+ 1)

(21)

and power complementary, i.e., double complementary. In
terms of the pole frequencyωp and the pole quality factor
qp, we recognize in biquad transfer functionωp = 1 (as in
the case of the Butterworth filter) and first degree coefficient
is 1/qp.

Pole-zero plots of these two allpass functions are shown in
Fig. 3. InA2(s) are included the outermost pole pair, the third
outermost pole pair, and so on (see the pole pair tagged with
× on the Fig. 3). The remaining pole pairs belong toA1(s).

Fig. 4 gives a comparison of new filter frequency responses
(Rs = 40 dB andk = 5) with Butterworth filter frequency
responses. Both filters are 7th degree.

A sample of some normalized proposed transfer functions
for 3 dB maximum passband attenuation and 40 dB minimum
stopband attenuation, in factored form, can be found in Table I.
In this table the frequencies are normalized to passband edge
frequencyωc = 1. The numerator is normalized to that the
dc gain of thee system is equal to unity. The passband ripple
can be calculated by using (2). Since stopband ripple is 40 dB
(0.01 times) then passband ripple is4.3432× 10−4 dB.
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TABLE I
DOUBLE COMPLEMENTARY APPROXIMATION FUNCTION FORRp = 40 dB

n Denominator ofH(s) Numerator ofH(s)

3 (s+ 1)(s2 + 0.9124264s+ 1) 0.0875736s2 + 1
5 (s+ 1)(s2 + 1.4728206s+ 1)(s2 + 0.4728206s+ 1) 0.3036200s2 + 1
7 (s+ 1)(s2 + 1.7136030s+ 1)(s2 + 1.0198032s+ 1)(s2 + 0.3062001s+ 1) 0.4649038s2 + 1
9 (s+ 1)(s2 + 1.8305027s+ 1)(s2 + 1.3690518s+ 1)(s2 + 0.7627434s+ 1)(s2 + 0.2241943s+ 1) 0.5714580s2 + 1

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Real part

Im
a

g
in

a
ry

 p
a

rt

Fig. 3. Pole-zero plot of allpass functions ins-plane of the 7th-order
prototype for transfer function withRs = 40 dB, M = 1 and l1 = 1.
Poles and zeros ofA1(s) are tagged with× and© respectively; but poles
and zeros ofA2(s) are tagged with+ and� respectively.
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Fig. 4. Comparison of 7th degree new filter frequency responses (Rs = 40
dB andk = 5) with 7th degree Butterworth filter frequency responses.

IV. I MPLEMENTATION

In this section we discuss the design of continuous-time part
of two channel hybrid filter bank based on all-pass active RC
structure. All-pass transfer functions are non-minimum phase
transfer function i.e., they have zeros in the right half of the
complex-frequency plane.

Basically, there are two implementation manners of realiz-
ing such continuous-time allpass filter circuits. One alternative
is the passive implementation, consisting of only passive
components like capacitors and inductors. A number of passive
circuit topologies exist, which can be used for this purpose, for

instance the Lattice or T-section filters. The other alternative
is the active implementation, consisting of active deviceslike
operational amplifiers as well. Through the application of
active components, it is possible to omit the bulky and costly
inductor components, as well as providing more freedom in
the shaping of the filter characteristic.

The active RC realization by cascading first and second
order section (biquad) is proposed in this paper. The biquad
can be realized with single or more operational amplifiers. The
single amplifier lowpass and highpass filter will be discussed.

The transfer function of an even degree is not suitable
for complementary decomposition because its allpass transfer
functions have complex coefficients.

The single amplifier all-pass network first degree and the
Delyiannis second degree all-pass circuit are given on the
figure 5(a) and 5(b), respectively [12, chap. 4]. It is assumed
that the ideal operational amplifiers are used.

C

(a)

R1 R2

R •
ui

u0
+

−
A1

R1
C1

C2

R2

Rb

Ra

(b)

+

−
A1ui uo

•
•

Fig. 5. (a) The single amplifier all-pass network first degree and (b) the
all-pass network second degree.

The circuit on the figure 5(a) is referred to as the grounded
capacitor allpass network. ForR1 = R2 transfer function of
first degree allpass network is

H(s) = −
s− 1

RC

s+
1

RC
Transfer function of allpass network second degree, assum-

ing ideal operational amplifier,C1 = C2 = C is as follows

H(s) = ho

s2 −
[Ra

Rb

1

R1C
− 2

R2C

]
s+

1

R1R2C2

s3 +
2

R2C
s+

1

R1R2C2

(22)

where ho = Rb/(Ra + Rb). Equating coefficients of equal
powers of s in Eqs. (21) and (22) we can obtain the following
component values

R1 =
1

2Cqp
, R2 =

2qp
C

,
Ra

Rb
= 4

R1

R2
(23)
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Fig. 6. Implementation of seven degree continuous-time part oftwo channel hybrid filter bank.

From Fig. 5, we have the implementation of the two channel
continuous-time filter bank with component values shown in
Fig. 6. Pole-zero plot is on the Fig. 3 given. The first all-pass
filter A1(s) is realized by two second order sections shown in
figure 5(b) and placed in cascade. The second all-pass filter
A2(s) is realized by one first order section shown in figure
5(a) and one second order section placed in cascade.

The standard inverting summing amplifier is used for com-
bining two signals. The differential amplifier circuit is used
as subtractor. In these circuits, input signals are scaled to the
desired values by selecting appropriate values for the resistors.
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Fig. 7. Impulse responses forN = 7. (a) Lowpass filter, (b) highpass filter

The lowpass and highpass impulse responses for a seventh-
order conventional Butterworth and proposed filter can be
seen in Fig. 7. As can be seen both impulse response are
very similar. In connection with Figure 4 new filter has better
frequency responses in comparison with the Butterworth filter.

V. CONCLUSION

A new class of continuous-time filter structures has been
presented, which can be used for efficient implementation of
the hybrid filter bank. The conditions required to be satisfied

by the transfer functions, so as to be implemented as a parallel
connection of two all-pass filters, are listed. If filter degree is
odd, allpas functions have real coefficients, but for even filter
degree the allpass function involves in the implementationthe
complex coefficients. The efficiency of the proposed design
has been demonstrated by means of an example.
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